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Abstract

This document describes the designs of a generic distributed certification authority and
of a trusted party for optimistic fair exchange that are based on fault-tolerant middle-
ware for service replication. It also discusses other uses of the replication middleware for
implementing trusted services. It may serve as a blueprint for building generic trusted
third-party services that use the state-machine replication approach.
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1 Introduction

Distributed systems running in error-prone and adversarial environments must rely
on trusted components, such as secure directories, name and authorization services, or
certification authorities. Building centralized trusted services has turned out to be a valu-
able design principle for computer security because the trust in them can be leveraged to
many, diverse applications that all benefit from centralized management. But centraliza-
tion introduces a single point of failure. Even worse, it is also difficult to protect any single
system against the sort of attacks found on the Internet today.

The fault tolerance of centralized components can be enhanced by distributing them
among a set of servers and by using replication algorithms for masking faulty servers. Thus,
no single server has to be trusted completely and the system derives its integrity from a
majority of correct servers. Our approach builds on fault-tolerant protocols for dependable
secure service replication. It uses active replication [20], which works for any service that
is implemented by a deterministic state machine.

This work gives the detailed specification of a distributed certification authority
based on the state-machine replication method and on a threshold signature scheme (Sec-
tion 3), and the specification of a distributed trusted party for optimistic fair exchange
(Section 4).

It also reviews other applications to trusted services that MAFTIA’s distributed
state-machine replication protocols have already found (Section 5).

Together with the specifications of further trusted services found in the previous
MAFTIA deliverable on the subject [5], they form the basis for realizing generic trusted
services with the state-machine replication method.

Detailed descriptions of the relevant parts of the MAFTIA middleware for asyn-
chronous group communication are specified in D26 [5] and in D24 [22]. Because the
updated protocol and API specifications as used here are not available as a MAFTIA de-
liverable at the time of this writing, we refer to the technical report [8] that documents
the parts to be used in the context of secure service replication.



2 System Model

We briefly recall the system model for our distributed trusted service from [5].

Our approach is based on protocols for secure state-machine replication and coor-
dination among a group of servers connected by a wide-area network, such as the Internet.
These protocols are described in [5, 22].

The trusted service is implemented by a static group of n servers, of which up to
t may fail. They are connected by reliable asynchronous point-to-point links and have
no access to a common clock. Faulty servers can fail in arbitrary, malicious ways and
are called corrupted, the remaining ones are called honest. Our replication protocols work
under the assumption that n > 3¢, which is optimal for an asynchronous network with
malicious faults.

The servers are connected only by asynchronous point-to-point communication links
and do not have access to synchronized clocks. Thus, our approach automatically tolerates
timing failures as well as all attacks that exploit timing. The group model is static, which
means that failed servers must be recovered by mechanisms that are currently outside of
the architecture.

We need a trusted dealer to generate the secret keys for a particular configuration
of the group. The dealer is needed only once, when the system is initialized. The keys
must be distributed to all servers in a trusted way. Our reason for introducing a trusted
dealer is that no efficient protocols for generating all necessary cryptographic keys in a
distributed fault-tolerant way are currently known.

The description here usually assumes that up to a certain fraction of all servers fail.
This implies a threshold failure model, which is appropriate for independent failures, but
not for maliciously induced faults. However, our protocols are not limited to threshold
failure assumptions. As shown in [5], it is possible to use generalized adversary structures,
which are also adequate for faults that represent malicious acts of an adversary. They can
accommodate a strictly more general class of failures than any weighted threshold failure
assumption.

In addition to the servers, there is an unspecified number of clients, which may be
corrupted by an adversary well.



3 A Certification Authority

This section describes the MAFTIA distributed certification authority or DCA for
short. DCA does not store its secret signing key at a single location, which might be com-
promised by an attacker. Instead, it uses threshold cryptography and secure replication
protocols to distribute the power of issuing a certificate among a group of servers, which
may only be connected by an asynchronous network like the Internet. DCA issues cer-
tificates for encryption public keys and for digital signature (verification) public keys, for
encryption schemes that are secure against adaptive chosen-ciphertext attacks [17] and for
digital signature schemes that are unforgeable against adaptive chosen-message attacks [13].

This chapter describes the components of the DCA (Section 3.1), how clients in-
teract with the DCA (Section 3.2), how the validity of certification requests is determined
(Section 3.3), and how the DCA is implemented (Section 3.4).

3.1 Components

DCA runs on a group of n servers, of which up to t < n/3 may be faulty or corrupted
by a malicious adversary. They are linked by an asynchronous point-to-point network
(providing authenticated asynchronous channels). The servers may also communicate with
clients over asynchronous channels, but clients are anonymous.

In the context of the coordination protocols used by DCA, the servers do not have
access to synchronized clocks and no assumptions are made about their relative speed
of execution. Thus, they operate in a fully asynchronous network, which rules out all
time-based attacks on the protocol level.

Of course, the servers may need access to a common notion of time in order to
determine the validity period of a certificate. But this presumably needs much less accuracy
than clocks for synchronizing network protocols, so that this assumption does not invalidate
the assumption of an asynchronous communication network.

DCA needs to be initialized in a trusted way. This means that an administrator
generates the signing key of DCA on a central server to obtain n initialization files. These
files must then be copied to the servers in a secure way (e.g., by using manual distribution
via a floppy disk, by encrypted email, or through an encrypted login session). The DCA'’s
public key should be made available to all users.

When the DCA thread is started on every server, the DCA starts to operate. It will
accept requests from clients to issue and update certificates as described in Section 3.2.
The validity of requests for certificates is determined according to the certificate issuing



mode described in Section 3.3.

3.2 Client Operations

Clients access the DCA to issue a new certificate, to update an existing certificate,
to revoke an existing certificate, or to retrieve one or more certificates. Clients are assumed
to know the DCA public key and the identities of all n DCA servers; they can communicate
with all servers through an asynchronous communication network. Each DCA operation
is described below.

3.2.1 Issuing a new certificate

A certificate issue request is sent by a client who wants to obtain a new certificate
on a particular public key that it controls (i.e., for which it knows the corresponding
secret key) and a particular name. In single-server certification authorities, the validity of
such a request is usually determined by a trusted application, which may also include a
“registration authority.” Because this is not possible in our distributed model, where some
of the DCA servers may be corrupted themselves, a key confirmation step is mandatory
for every certificate issue and update request.

To start issuing a new certificate, the client sends the message
(issue-request, rid, key, name, credentials)

to one or to a quorum of 2t + 1 DCA servers (the difference between contacting one and
a quorum of 2t + 1 servers is explained in Section 3.2.5). The string rid is the request
tdentifier, which should be chosen as a unique value by the client. key is an encryption
or signature public key, name contains the name and attributes to be bound to the key,
and credentials contains any further information that may be necessary to determine the
validity of the request.

If the DCA has determined that the certificate issue request is valid, the client will
receive several (at least ¢ + 1) messages of the form

(issue-challenge, rid, s)

from distinct DCA servers, where s is an arbitrary-length bit string. If key is an encryption
public key, the client must interpret s as a ciphertext, decrypt it using the corresponding
secret key, and return the decryption d in a message

(issue-answer, rid, d)

4



to the server from which it received the issue-challenge message. If key is a signature
verification key, the client must sign s using the corresponding signing key and return the
resulting signature d in an issue-answer message.

This step proves to the DCA servers that the client controls the secret key belonging
to the public key on which it requests a certificate. Although it is not a proof of knowledge
in the technical sense [12] and it is not clear what the implications of the verification for an
application are, in our context this protocol serves to authorize the certificate request for
the DCA, which is distributed. (We do not want to invoke a non-distributed “registration
authority” that determines which keys are bound to which names as this could become a
single point of failure.) In any case, if a client could forge correct answers to the requests
without having access to the secret key, both the encryption scheme and the signature
scheme would be considered insecure.

The client then waits until it receives a message
(issue-cert, rid, cert)

where cert contains a valid certificate under the DCA’s public key on the key and name
supplied in the issue-request message.

3.2.2 Updating a certificate

A certificate update request is sent by a client who wants to change the binding
of a key to a name, which was established in one or more certificate(s) issued previously
by the DCA. Again, the client must prove to the DCA that it controls the corresponding
secret key in a mandatory key confirmation step.

To start updating a certificate, the client sends the message
(update-request, rid, key, name, credentials)

to one or to a quorum of 2t + 1 DCA servers (the difference between contacting one and
a quorum of 2¢ + 1 servers is explained in Section 3.2.5). The string rid is the request
identifier, which should be chosen as a unique value by the client. key is an encryption
or signature public key, name contains the name and attributes to be bound to the key,
and credentials contains any further information that may be necessary to determine the
validity of the request.

If the DCA has determined that the certificate update request is valid, the client
will receive several (at least ¢ + 1) messages of the form

(update-challenge, rid, s)

bt



from distinct DCA servers, where s is an arbitrary-length bit string. If key is an encryption
public key, the client must interpret s as a ciphertext, decrypt it using the corresponding
secret key, and return the decryption d in a message

(update-answer, rid, d)

to the server from which it received the update-challenge message. If key is a signature
verification key, the client must sign s using the corresponding signing key and return the
resulting signature d in an update-answer message.

This step proves to the DCA servers that the client controls the secret key belonging
to the public key on which it requests a new certificate.

The client then waits until it receives a message
(update-cert, rid, cert)

where cert contains a valid certificate under the DCA’s public key on the key supplied in
the update-request message.

Note that the new certificate resulting from an update action (or from an issue
request) is self-verifying since the client can determine itself if its request has been executed

properly.

3.2.3 Revoking a certificate

A certificate revocation request is sent by a client who wants to remove the binding
of a key to a name, which was established in one or more certificate(s) issued previously

by the DCA.

To revoke a certificate, the client sends the message
(update-request, rid, key, name, credentials)

to one or to a quorum of 2t + 1 DCA servers (the difference between contacting one and
a quorum of 2¢ + 1 servers is explained in Section 3.2.5), where name may be left empty
in key-major mode and key may be left empty in name-major mode. The string rid is
the request identifier, which should be chosen as a unique value by the client. key is an
encryption or signature public key, name contains name and attributes, and credentials
contains any further information that may be necessary to determine the validity of the
request.



3.2.4 Retrieving certificates

DCA stores all valid (i.e., non-updated and non-revoked) certificates. A client who
wants to obtain a certificate for a particular public key or a particular name may do this
using the following protocol for retrieving certificates.

The client sends a message
(retrieve, rid, key, name)

to one or to a quorum of 2t + 1 DCA servers (the difference between contacting one and a
quorum of 2t + 1 servers is explained in Section 3.2.5). The string rid is a request identifier,
which should be chosen as a unique value by the client, and either key or name may be
empty, but not both. The idea is that a client can retrieve all certificates for a given key,
for a given name, or for a given combination of key and name.

The client then waits to receive at least 2t + 1 messages of the form
(retrieve-cert, rid, {, certy, certy, . .., certy)

from distinct DCA servers such that their content is the same. certy, certs, ..., cert, are all
certificates known to DCA pertaining to the supplied key or name.

It is necessary for the client to obtain 2¢ + 1 consistent answers from different DCA
servers because the client must be sure that the answers represent the current contents of
the certificate database. Note that it may be the case that up to t servers are corrupted
and send back invalid, outdated, or incomplete results. Moreover, also up to ¢ honest
servers may send incomplete answers because they are slow and have not yet completed
the most recent update operation(s). Thus, their answers may contain certificates that
have been revoked or updated by the honest majority in the mean time. But receiving
2t+1 answers that agree on their contents ensures that the answer was also sent by at t+ 1
honest servers, at least one of them knows the current state of the DCA, and therefore the
answer 1s consistent.

It is interesting to note that only the certificate retrieval operation needs this extra
redundancy. The certificate issuing and update operations, in contrast, have self-verifying
results since the client can determine itself if a request has been executed properly.

3.2.5 Contacting one or a quorum of 2t + 1 servers

As mentioned above, a client may send a request to one DCA server or to a quorum
of 2t + 1 servers. These are two different modes of contacting the DCA and their difference
is as follows.



In the first case, where a request is sent to only one DCA server, this server becomes
responsible for broadcasting the request to the group of all n DCA servers. Should this
server crash or become corrupted, it is possible that the client’s request is lost and never
processed by DCA. In order to prevent this, we require that a client, who has not received
any answer to a request sent previously, must resend this request to a different DCA server
with the same rid. How long a client may wait before “timing out” is left to the particular
application. If a client proceeds like this but receives no answer for an extended period of
time, it will have sent the request to at least 2t + 1 DCA servers, which brings us to the
second case.

In the second case, the server has sent the request to at least 2t 4+ 1 different DCA
servers. The servers are running an atomic broadcast protocol to disseminate the requests,
which guarantees fair delivery of a request only if at least t+ 1 honest servers send it [5, 22].
But by the assumption on the number of failures, at least t+1 of the servers who receive the
request are honest, which ensures that it is eventually delivered by the atomic broadcast
and processed by DCA. The DCA servers identify requests through the combination of
the name of the client (e.g., its I[P address) and the rid chosen by the client. The DCA
implementation must filter out duplicate requests with the same identification.

3.3 Certificate Issuing Modes

DCA handles certificate update requests in one of two modes: key-magjor or name-
major mode. They correspond to the difference between binding a name to a key and
binding a key to a name.

For the purpose of this discussion, assume key and name parameters in requests to
DCA are represented by Java objects of type

public interface Key implements java.lang.Comparable
and
public interface Name implements java.lang.Comparable

respectively. In other words, DCA knows how to compare and to sort keys and names.

In key-major mode, an update request binds the new name to an existing key and
invalidates any previously issued certificate that may have bound a different name to key.
The validity of such a request is determined using the credentials supplied with the request.



This corresponds to the example of a public key (for encryption or signatures) that a user
posts on his or her web page, when the user obtains a new email address.

More precisely, when a valid update request is processed by a DCA server, it re-
moves all those certificates from its certificate store that match key using the operations in
java.lang.Comparable. Then it signs the new binding of name to key, stores the resulting
certificate, and also sends it to the client.

In name-major mode, conversely, an update request binds a new key to an existing
name and invalidates any previously issued certificate that may have bound a different key
to name. The validity of such a request is determined using the credentials supplied with
the request. This corresponds to a public key associated with an email address that is
posted on a web page, and where a new public key is generated and bound to the existing
address in case the owner believes the old key has been compromised.

More precisely, when a valid update request is processed by a DCA server, it removes
all those certificates from its certificate store that match name using the operations in
java.lang.Comparable. Then it signs the new binding of key to name, stores the resulting
certificate, and also sends it to the client.

3.4 Implementation

The certificates issued by DCA are based on RSA signatures [19]. The current
format is proprietary, but future extensions will optionally allow to produce standard

X.509-type certificates. Certificates are produced as threshold signatures using the scheme
of Shoup [21, 5, 22, 8].

Every DCA server has a certificate store that contains all valid certificates (i.e., all
certificates that have not been revoked or updated).

The initialization data of every server contains a key share of an (n, ¢t + 1)-threshold
signature scheme S.

The DCA servers use an atomic broadcast protocol to distribute all requests that
are sent to DCA [5, 22, 8]. The common atomic broadcast channel is started when the
servers have been initialized and begin to operate.

The only payload carried by the atomic broadcast channel are client requests. The
details of the atomic broadcast implementation used by DCA can be found in [5]. This
protocol requires the dealer to generate a key pair of a digital signature scheme for every
party and to include the public keys of all parties in the initialization data.



The atomic broadcast channel implementation uses the sender’s identity and a sep-
arate sequence number for each sender for identifying the payload messages. This is in
contrast to the abstract protocol description in [5], where payloads are identified by their
bit-string representation. This change seems unavoidable for any reasonably efficient im-
plementation since one would otherwise have to store a complete history of payloads. Thus,
the abstract integrity property [5] that every payload message is delivered at most once,
no matter which parties sent it, has to be changed for DCA: Here it means that a message,
consisting of a bit string, is delivered at most once for every time that an honest party sent
that bit string. See also [8] for a discussion of this issue.

Because of this fact, DCA must include an additional layer to exploit the fairness
property while maintaining integrity, i.e., so that more than one server (i.e., 2t + 1 servers)
may send the same client request on the broadcast channel but the request is executed
at most once. This extra layer on top of atomic broadcast filters out the duplicate client
requests. Every DCA server maintains a history of the client requests that have been
delivered on the atomic broadcast channel. (In practice, it will be necessary to limit the
size of this history, but the bigger it can grow, the better the performance of the protocol.)

When a DCA server receives a request from a client, it first checks if the request is
already present in the history of delivered client requests (using the client identity together
with rid to identify requests in the history). If yes, it discards the request; otherwise, it
sends it on the atomic broadcast channel.

When a request is delivered on the atomic broadcast channel, a DCA server also
checks if the request is already present in the history of delivered client requests. If yes, the
server discards the request. If not, the server adds the request to the history and processes
it.

Requests are processed as described next.

3.4.1 Processing issue and update requests

Suppose an issue or update request r for key and name is ready to be processed and
assume that DCA operates in key-major mode (the operation is analogous for name-major
mode). Then the server marks all certificates in the certificate store that contain key as
“in transition” and any future client request pertaining to key is buffered until r has been
processed.

At this time, the server spawns a separate thread to handle request r and may
continue to process requests that are delivered on the atomic broadcast channel.

10



The server uses the current policy and the credentials supplied with r in order to
determine if the request should be processed. If yes, the server sends the appropriate
challenge request to the client (i.e., either an encryption under key of a randomly chosen
nonce or a random nonce). Then it waits until the client returns the suitable answer
message and checks the validity of the answer using key.

Next the server starts a binary Byzantine agreement protocol [5, 22| to determine if
r should be fulfilled or not. The binary agreement instance is identified by client’s identity
and by the rid from r. The initial vote of the server is set to “yes” if and only if both of
the above tests were valid (i.e., r satisfied the policy and the client answered the challenge
in the correct way).

The outcome of the binary agreement protocol determines how the server proceeds.
If the outcome is “no,” the server unmarks all certificates in the certificate store that
contain key (those marked “in transition” above). Then it terminates the processing of .

If the outcome is “yes,” the server generates a share of a threshold signature for the
requested certificate and sends it to all DCA servers. Then it waits for receiving enough
(t+ 1) shares of the signature from other servers, and assembles the certificate once it gets
them.

If r is an update request, the server removes all certificates in the certificate store
that contain key (those marked “in transition” above).

In any case, the server then adds the new certificate to its certificate store and sends
the new certificate in a message of type cert to the client. This terminates the processing
of r.

All requests that may have been buffered because some certificates related to r
were marked as “in transition” are processed next. They are processed in the same order
in which they have been queued up.

3.4.2 Processing a revocation request

Suppose a certificate revocation request r for key (and perhaps name) is ready to be
processed and assume that DCA operates in key-major mode (the operation is analogous
for name-major mode).

If the server is concurrently processing a request containing key (and has marked all
certificates containing key “in transition” as described above), then the request is buffered
and processed later.

11



Otherwise, the server uses the current policy and the credentials supplied with r
in order to determine if the request should be processed. If yes, it removes all certificates
from the certificate store that contain key (and perhaps name, if name is not empty).

3.4.3 Processing a retrieval request

Suppose a retrieval request r for key and/or name is ready to be processed. Recall
that retrieval requests contain at least a value for either key or name. Assume further that
DCA operates in key-major mode (the operation is analogous for name-major mode).

If the server is concurrently processing a request containing key (and has marked all
certificates containing key “in transition” as described above), then the request is buffered
and processed later.

Otherwise, the server proceeds to answer the request immediately. No separate
thread is started for this operation. All certificates matching key and/or name are retrieved
from the certificate store. If only name is supplied in r, the certificates that match name
and are marked as “in transition” may either be included as well or may be ignored (this
choice is implementation-dependent). The resulting certificates certy, certy, ..., cert, are
returned to the client in a retrieve-cert message.

3.5 Discussion

This specification does not ensure that a client who sends an invalid or even a bogus
request maintains liveness. In fact, such a client may be waiting forever for an answer from
DCA. But any implementation would most likely include additional answer messages with
suitable error codes.

The only other proposal for a distributed certification authority that we are aware of
is COCA [23], the Cornell On-line Certification Authority. It does not use atomic broadcast
but imposes an application-specific ordering for update requests that modify certificates
for the same key.

COCA does not have the flexibility of DCA for configuring its operation mode, but it
executes potentially faster because its protocols are less involved. Another difference is that
COCA may execute certificate update and retrieval operations concurrently and therefore
a certificate query operation sometimes does not return the most recent certificate. In
contrast, DCA serializes update and retrieval operations through atomic broadcast such
that retrieval operations always return the most current certificate.

12



4 A Trusted Party for Optimistic Fair Exchange

This section describes the MAFTIA distributed optimistic fair exchange service or
DFE for short.

The fair exchange problem lies at the basis of may commercial interactions between
two parties: how the participants can exchange two valuable tokens in such a way that
either both get the item they bargained for or neither does. Many protocols have appeared
in the literature to solve this problem, and they all use the mechanism of a trusted third
party in some way (at least all potentially practical protocols do so). Perhaps the most
efficient algorithms are those which go under the name of optimistic fair exchange [1],
where the third party is only involved when the transaction fails, either to abort a transfer
when the initiating party is not releasing her valuable item, or to force a conclusion of the
transaction if the first party has released her good but the second is trying to avoid the
promised payment—or simply if some of the protocol messages are lost or deleted by a
malicious network.

DFFE implements the third party by a group of servers of which some might be
corrupted themselves and collaborate with corrupted clients. DFE uses a distributed
signature scheme and secure coordination protocols to tolerate such faults.

This chapter describes first the fair exchange protocols used by DFE (Section 4.1),
the components of DFE (Section 4.2), how clients interact with DFE (Section 4.3), and
how DFE is implemented (Section 4.4). There are some modifications with respect to the
preliminary description of DFE in [5], which are explained below.

4.1 Protocols

The fair exchange protocol used by DFE is the asynchronous protocol proposed by
Asokan, Shoup and Waidner [2]. It provides an exchange of digital signatures. This proto-
col has the advantage of being extremely flexible, so that it can operate on all commonly
used signature schemes and can be easily adapted for the exchange of digital content or
certified e-mail, for example. The communication model used in [2] is the same as used
here, relying only on asynchronous communication on an untrusted network. We shall
describe here the special case from [2] of a protocol for the electronic signing of contracts,
because it is one that can very easily take advantage of the communication primitives we
have developed.

Let us denote by [a]x the bit string « concatenated with a signature on a under
X’s public key. Then the protocol for optimistic fair exchange of digital signatures on a

13



contract m between two parties A and B, with dispute resolution by the trusted party T,
proceeds as follows:

1. A sends B the message
(promiseA, [m, A, B,T]4)
2. B receives the message and verifies the signature; if successful, it replies with
(promiseB, [m, A, B, T|p),
otherwise B quits;
3. A receives and verifies this message; if successful, it sends to B the message
(commitA, o4),
where o4 = [m, A, B]a, otherwise A requests an abort from T

4. B receives the message containing o4 from A and verifies the signature; if successful,
it sends to A the message
(commitB, o),

where op = [m, A, B]g, and accepts the pair (04,0p) as the exchange contract;
otherwise B requests a resolve from T,

5. A receives this message and checks the signature from B; if successful, it accepts the

pair (o4,0p) as the exchange contract; otherwise, A requests a resolve from T.

In this scheme, a wvalid contract is a string of the form
([m, A, Bla, [m, A, B])
or, in the case that T intervened,
|[m, A, B, T]4,[m, A, B, T]5]_;

the latter is called a prozy signature and results from an exchange where T intervened on
behalf of a party that sent a resolve request. We are assuming that the social infrastructure
is in place to enforce it legally as completely as a normal contract.

There are two requests the trustworthy 7" must be able to handle: an abort from A
and resolves from A or B. The abort is essentially a request from A that all future resolves
from B on the contract m be disallowed. If, however, B has already resolved, T' can and
does directly deliver the proxy signature to A.

14



Either A or B may attempt to resolve by sending T" the message
Myresolve = (resolve, [mu A7 Bu T]A7 [m> Aa B7 T]B>>
to which T replies with [m,esoe]r if N0 abort has yet been processed.

In this optimistic protocol, it is expected that A and B will only turn to the TTP
for conflict resolution—in which case T" must always be able to respond reliably.

4.2 Components

DFE runs on a group of n servers, of which up to t < n/3 may be faulty or corrupted
by a malicious adversary. They are linked by an asynchronous point-to-point network.

The servers that make up the DFE must be initialized in a trusted way. In other
words, an administrator generates the necessary cryptographic keys for the secure agree-
ment protocols run by the DFE servers and for the digital signature scheme of the DFF.
Then every server receives its initial keys in a secure way.

The DFE starts to operate when the DFFE thread is started on every server. It will
not start any protocols unless a client request is received.

4.3 Operation

Compared to the description above, the fair exchange protocols only have to be
changed in the abort and resolve sub-protocols. In particular, 7" maintains some state
information which must be kept in a consistent fashion across the separate DFFE servers.

In the course of normal, friendly interactions, A and B will not contact T at all,
and hence there need be no change whatsoever in the above protocol for their personal
communication.

Let tid be a bit string agreed upon by A and B to uniquely identify their transaction
(such as a hash of the contract itself, tid = H(m)) and assume that all DFE servers have
key shares for a non-interactive (n,t + 1, t)-threshold signature scheme S [21]. Its public
key must be know to all clients.
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4.3.1 Sub-protocol abort

If A invokes the abort protocol, it sends a message
(abort, tid, [m, A, B, abort],)

to all DFE servers. Then it waits to receive an answer from at least n — ¢t DFFE servers
that is of the form
(answer, tid, b, s)

where b € {aborted, resolved}.

If b = resolved then A verifies that s contains an S-signature share on the message
m, A, B,T)4,|m, A, B, T|p and assembles these to a proxy-signature if successful (note that
t + 1 shares suffice for this).

4.3.2 Sub-protocol resolve

If A (or B) invokes the resolve protocol, it sends a message
(resolve, tid, [m, A, B, T|a,|[m, A, B,T|g)

to all DFE servers. Then it waits to receive an answer from at least n — ¢ DFFE servers
that is of the form
(answer, tid, b, s)

where b € {aborted, resolved}.
If b = resolved then A (or B) verifies that s contains an S-signature share on the

message [m, A, B, T|a,[m, A, B, T|p and assembles these to a proxy-signature if successful
(note that ¢ 4+ 1 shares suffice for this).

4.4 Implementation

This section describes how the DFFE servers implement the trusted party for fair
exchange.

We assume that the digital signatures issued by clients of the service (A, B, ...)
are verifiable by all DFFE servers. This can be implemented in several ways, most likely
it will be a public-key infrastructure that certifies the digital signature public keys of all
clients (for example by running a certification according to Section 3).
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Suppose that all servers keep a local transaction database T that contains entries
of the form
(tid, b, s)

with b € {aborted, resolved} and s an arbitrary string.

A DFE server operates as follows. When it receives an abort or resolve request
from a client pertaining to a particular #id, it first checks if any entry (tid, b, s) is present
in 7. If yes, it returns a message

(answer, tid, b, s)
with b and s from 7.

If (one of) the digital signature(s) present in the request do not verify properly, the
request is ignored.

Otherwise, it checks if there is an active request with ¢id around (which means that
such a request has been received, but no corresponding answer has been sent yet). If so,
it postpones answering the request until the handling of the active request with tid has
terminated; then it reads the answer from the transaction database 7 as above.

Otherwise, no valid request pertaining to tid has been received yet. In this case, it
starts a binary validated Byzantine agreement protocol [5, 22, 8] with transaction identifier
set to tid. Its initial vote of 0 or 1 is determined by the contents of the client request
and is 1 if and only if the message from the client contained a properly justified resolve
request (i.e., where the signatures by A and by B are correct). If the initial vote is 1, the
corresponding validation data in the Byzantine agreement consists of the client request.

The validation predicate of the binary validated agreement verifies that all initial
votes of 1 are accompanied by properly justified resolve requests.

When the binary agreement protocol has decided for 0, the DFE server adds the
tuple
(tid, aborted, —)

to 7. Should the binary agreement protocol decide for 1 (in which case it also returns
validation data d), the DFE server computes an S-signature share s on the message

[ma A7 Ba T]Aa [ma A7 Ba T]B

which may be taken from d if the server did not receive a resolve request. It adds the
tuple
(tid, resolved, s)

to 7.
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Then the server returns a message
(answer, tid, b, s)

to the client who sent the request, with b and s from the entry (#id, b, s) that has just been
added to 7.

4.5 Discussion

The present implementation of the trusted party for fair exchange corresponds to
the original protocol for distributing the trusted party given in [7]. It relies only on a
binary Byzantine agreement protocol.

The implementation given earlier in [5] is less efficient because it builds on an atomic
broadcast protocol and multi-valued Byzantine agreement, which potentially involves many
instances of binary agreement.
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5 Other Applications

The approach of using a layer of Byzantine-fault tolerant replication middleware for
maintaining critical services in wide-area distributed systems has been explored by several
independent research groups recently. We briefly review three such applications here, a
time-stamping service, a global data storage, and a serverless distributed file system.

5.1 Identiscape

Identisacpe [16], developed in a project at Stanford University, manages various
identities that people take on during their Internet lifetime. It links old, potentially inval-
idated identities and public keys to new identities. This requires a naming history service,
which is implemented using a trusted time-stamping service for public keys. Any time-
stamped document signed under an outdated public key can thus still be verified. The
time-stamping service is implemented in a distributed way, and Identiscape proposes to
use protocols developed in the context of MAFTIA [5, 22, 6] for this purpose, includ-
ing the protocols for threshold signatures, verifiable consistent broadcast, common coin
(distributed shared random number generation) and multi-valued Byzantine agreement.

These protocols have been “implemented” in the Narses protocol simulator, where
the impact of cryptographic operations and network latency are simulated by appropriate
delays. As identity updates are considered to be rare events, Identiscape prioritizes safety
over speed; the authors report simulations of systems with up to 148 servers — far more
than ever intended for our protocols. They achieve a performance about 500 seconds per
update (i.e., one multi-valued agreement) for a group of 148 participants [16]. In spite of
the large number of participants and the fact that the unoptimized basic protocols were
used, the authors consider this to be acceptable.

5.2 OceanStore

The goal of OceanStore [18, 14] developed at the University of California in Berkeley
(http://oceanstore.cs.berkeley.edu/) is to provide highly available durable storage
in a distributed way. To this end, a large number of servers redundantly store encrypted
files provided by clients.

A file is stored by a group of servers, which may be different for every file. This
group consists of two parts, a primary ring and a secondary ring.
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The servers in the primary ring store the information that is necessary to locate
all fragments of the file and maintain this information in a consistent way during updates.
The primary ring employs fault-tolerant replication protocols for atomic broadcast and can
tolerate malicious behavior by up to one third of its members. This corresponds to one of
our distributed trusted services.

The servers in the secondary ring store redundant copies of fragments of every file.
They may also serve as caches and proxies for other clients. No particular group structure
is imposed on them, and they correspond to the clients in our model.

The two main protocols needed by the primary ring are:

Update serialization: Ensures that all updates to a file in the distributed storage are
performed in the same order such that it remains in a consistent state. This func-
tionality corresponds directly to an atomic broadcast. The authors propose to use
the protocol of Castro and Liskov [10], which provides the same service in a weaker
model as the atomic broadcast of MAFTIA [6].

Document certification: The primary ring may also sign the stored objects before dis-
tributing them to the secondary ring. This functionality is implemented using thresh-
old signatures.

In contrast to the trusted third-party services in MAFTIA, the primary ring is very
dynamic; in essence, every user of OceanStore may define its own set of trusted servers for
the primary ring as well as the corresponding failure thresholds (within obvious bounds
implied by the protocols). Thus, it is important to generate new sets of cryptographic keys
efficiently and to distribute them on the fly without manual intervention. The MAFTIA
protocols do currently not offer this service in a secure fashion.

So far, OceanStore does not directly use protocols developed by MAFTIA, but they
are under consideration as part of the security architecture for providing consistency [3].
In any case, the techniques used in OceanStore are very related to our approach.

5.3 Farsite

Farsite [4] is a serverless distributed file system developed at Microsoft Research
(http://research.microsoft.com/sn/Farsite/) relying on otherwise unused disk space
in a large number of desktop machines. It should provide security, availability, and relia-
bility by distributing multiple encrypted replicas of each file among the client machines.

Farsite encrypts the stored files under a key provided by the user. In order to save
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space when multiple users store copies of same data, their encryption technique apparently
allows to detect and to map together (“coalesce”) identical files, even when these files are
encrypted with separate keys.

The directory component in Farsite includes a directory service that is implemented
in a distributed fashion, such that the data for each directory is replicated among several
client machines. Whereas the integrity of file data is guaranteed by digital signatures (one
only needs enough file replicas to ensure a high degree of availability), the integrity of file
meta-data depends on the integrity of the parent directory, which might be undetectably
compromised by the machines that house the directory replicas. Therefore, the number of
directory replicas is significantly higher than that of file replicas, and the directory replicas
communicate using an atomic broadcast protocol that tolerates Byzantine faults, which
protects them from attacks by a fraction of the machines holding the replicas.

The authors propose to use the fault-tolerant replication protocol of Castro and
Liskov [10], which provides the same service in a weaker model as the atomic broadcast
developed in the context of MAFTIA [6].

5.4 Conclusion

Identiscape, OceanStore, and Farsite differ in their goals and thus in the require-
ments put on them. But it is interesting to note that all of them rely on a central component
that is implemented by a group of replicated servers using replication protocols tolerating
Byzantine faults. This provides direct support for the approach followed by MAFTIA.

Two of these projects cite the approach of Castro and Liskov [10], which achieves
a quite good performance, with update times below one millisecond in a high-speed LAN
environment. It remains to be seen how this approach maps to the Internet, where la-
tencies are significantly higher, and how it scales to a larger number of servers. Our own
preliminary results show that infrequent update operations are feasible also on the Inter-
net [8], even though our atomic broadcast protocol is actually one order of magnitude more
expensive than the one of Castro and Liskov. (The reason is that they have to make a
timing assumption, whereas our protocol is fully asynchronous.)

Recently, Kursawe and Shoup [15] have developed a protocol in the context of
MAFTTIA that combines the approach of Castro and Liskov with a multi-valued Byzantine
agreement in a fully asynchronous model. It essentially achieves the same performance as
the one of Castro and Liskov, which is near to optimal for the given model.

It also seems that key management, in particular the distributed generation of
shared keys, is a problem that has to be addressed before such systems are widely deployed.
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All of the mentioned applications assume that group membership is dynamic, but the only
secure group membership and key distribution protocols known so far work in synchronous
environments [9, 11]. Further research is needed to solve this problem.
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