A Critique of Software Defect Prediction Models

Norman Fenton
Martin Neil
Centre for Software Reliability
Northampton Square
London EC1V 0HB

Abstract: Many organisations want to predict the number of defects (faults) in software systems, before they are deployed, to gauge the likely delivered quality and maintenance effort. To help in this numerous software metrics and statistical models have been developed, with a correspondingly large literature. We provide a critical review of this literature and the state-of-the-art. Most of the wide range of prediction models use size and complexity metrics to predict defects. Others are based on testing data, the ‘quality’ of the development process, or take a multivariate approach. The authors of the models have often made heroic contributions to a subject otherwise bereft of empirical studies. However, there are a number of serious theoretical and practical problems in many studies. The models are weak because of their inability to cope with the, as yet, unknown relationship between defects and failures. There are fundamental statistical and data quality problems that undermine model validity. More significantly many prediction models tend to model only part of the underlying problem and seriously mis-specify it. To illustrate these points the ‘Goldilock’s Conjecture’, that there is an optimum module size, is used to show the considerable problems inherent in current defect prediction approaches. Careful and considered analysis of past and new results shows that the conjecture lacks support and that some models are misleading. We recommend holistic models for software defect prediction, using Bayesian Belief Networks, as alternative approaches to the single-issue models used at present. We also argue for research into a theory of ‘software decomposition’ in order to test hypotheses about defect introduction and help construct a better science of software engineering.

1 Introduction

Organisations are still asking how they can predict the quality of their software before it is used despite the substantial research effort spent attempting to find an answer to this question over the last 30 years. There are hundreds of papers advocating statistical models and metrics
which purport to answer the quality question. Defects, like quality, can be defined in many
different ways but are more commonly defined as deviations from specifications or
expectations which might lead to failures in operation.

Generally, efforts have tended to concentrate on the following three problem perspectives
[Schneidewind & Hoffmann 1979, Potier et. al. 1982, Nakajo & Kume 1991]:

- predicting the number of defects in the system;
- estimating the reliability of the system in terms of time to failure;
- understanding the impact of design and testing processes on defect counts and failure
densities.

A wide range of prediction models have been proposed. Complexity and size metrics have
been used in an attempt to predict the number of defects a system will reveal in operation or
testing. Reliability models have been developed to predict failure rates based on the expected
operational usage profile of the system. Information from defect detection and the testing
process has been used to predict defects. The maturity of design and testing processes have
been advanced as ways of reducing defects. Recently large complex multivariate statistical
models have been produced in an attempt to find a single complexity metric that will account
for defects.

This paper provides a critical review of this literature with the purpose of identifying future
avenues of research. We cover complexity and size metrics (Section 2), the testing process
(Section 3), the design and development process (Section 4) and recent multivariate studies
(Section 5). For a comprehensive discussion of reliability models, see [Brocklehurst &
Littlewood 1992]. We uncover a number of theoretical and practical problems in these
studies in Section 6, in particular the so-called ‘Goldilock’s Conjecture’.

Despite the many efforts to predict defects there appears to be little consensus on what the
constituent elements of the problem really are. In Section 7 we suggest a way to improve the
defect prediction situation by describing a prototype, Bayesian Belief Network (BBN) based,
model which we feel can at least partly solve the problems identified. Finally, in Section 8
we record our conclusions.

2 Prediction using size and complexity metrics

Most defect prediction studies are based on size and complexity metrics. The earliest such
study appears to have been [Akiyama 1971] which was based on a system developed at
Fujitsu, Japan. It is typical of many regression based ‘data fitting’ models which became
common-place in the literature. The study showed that linear models of some simple metrics
provide reasonable estimates for the total number of defects D (the dependent variable)
which is actually defined as the sum of the defects found during testing and the defects found
during two months after release. Akiyama computed four regression equations.

The equation (1) involving lines of code L (LOC) was so that, for example, a 1000 LOC (i.e.
1 KLOC) module is expected to have about 23 defects:
Other equations had the following dependent metrics: Number of decisions C; Number of subroutine calls J; and a composite metric $C+J$.

Another early study [Ferdinand 1974] argued that the expected number of defects increases with the number n of code segments; a code segment is a sequence of executable statements which, once entered, must all be executed. Specifically the theory asserts that for smaller numbers of segments, the number of defects is proportional to a power of n; for larger numbers of segments, the number of defects increases as a constant to the power n.

[Halstead 1975] proposed a number of size metrics, which have been interpreted as 'complexity' metrics, and used these as predictors of program defects. Most notably, Halstead asserted that the number of defects D in a program P is predicted by (2):

$$D = \frac{V}{3000}$$ \hspace{1cm} (2)

where V is the (language dependent) volume metric (which like all the Halstead metrics is defined in terms of number of unique operators and unique operands in P; for details see [Fenton & Kitchenham 1991]). The divisor 3000 represents the mean number of mental discriminations between decisions made by the programmer. Each such decision possibly results in error and thereby a residual defect. Thus, Halstead's model was, unlike Akiyama's, based on some kind of theory. Interestingly, Halstead himself "validated" (1) using Akiyama's data. [Ottenstein 1979] obtained similar results to Halstead.

[Lipow 1982] went much further, because he got round the problem of computing V directly in (3), by using lines of executable code L instead. Specifically, he used the Halstead theory to compute a series of equations of the form:

$$\frac{D}{L} = A_0 + a_1 \ln L + A_2 \ln^2 L$$ \hspace{1cm} (3)

where each of the A_i are dependent on the average number of usages of operators and operands per LOC for a particular language. For example, for Fortran $A_0 = 0.0047$; $A_1 = 0.0023$; $A_2 = 0.000043$. For an assembly language $A_0 = 0.0012$; $A_1 = 0.0001$; $A_2 = 0.000002$.

[Gaffney 1984] argued that the relationship between D and L was not language dependent. He used Lipow's own data to deduce the prediction (4):

$$D = 4.2 + 0.0015 (L)^{4/3}$$ \hspace{1cm} (4)

An interesting ramification of this was that there was an optimal size for individual modules with respect to defect density. For (4) this optimum module size is 877 LOC. Numerous
other researchers have since reported on optimal module sizes. For example, [Compton & Withrow 1990] of UNISYS derived the following polynomial regression equation:

\[D = 0.069 + 0.00156L + 0.00000047L^2 \]

(5)

Based on (5) and further analysis Compton and Withrow concluded that the optimum size for an Ada module, with respect to minimising error density is 83 source statements. They dubbed this the ‘Goldilocks Principle’ with the idea that there is an optimum module size that is “not too big nor too small”.

The phenomenon that larger modules can have lower defect densities was confirmed [Basili & Perricone 1984], [Shen 1985], and [Moller & Paulish 1993]. Basili and Perricone argued that this may be explained by the fact that there are a large number of interface defects distributed evenly across modules. Moller and Paulish suggested that larger modules tend to be developed more carefully; they discovered that modules consisting of greater than seventy lines of code have similar defect densities. For modules of size less than seventy lines of code, the defect density increases significantly.

Similar experiences are reported by [Hatton 1993, 1994]. Hatton examined a number of data sets [Keller 1992, Moller & Paulish 1993] and concluded that there was evidence of ‘macroscopic behaviour’ common to all data sets despite the massive internal complexity of each system studied, [Hatton 1997]. This behaviour was likened to ‘molecules’ in a gas and used to conjecture an entropy model for defects which also borrowed from ideas in cognitive psychology. Assuming the short-term memory affects the rate of human error he developed a logarithmic model, made up of two parts, and fitted it to the data sets1. The first part modelled the effects of small modules on short-term memory, while the second modelled the effects of large modules. He asserted that, for module sizes above 200-400 lines of code, the human ‘memory cache’ overflows and mistakes are made leading to defects. For systems decomposed into smaller pieces than this cache limit the human memory cache is used inefficiently storing ‘links’ between the modules thus also leading to more defects. He concluded that larger components are proportionally more reliable than smaller components. Clearly this would, if true, cast serious doubt over the theory of program decomposition which is so central to software engineering.

The realisation that size-based metrics alone are poor general predictors of defect density spurred on much research into more discriminating complexity metrics. McCabe’s cyclomatic complexity, [McCabe 1976], has been used in many studies, but it too is essentially a size measure (being equal to the number of decisions plus one in most programs). [Kitchenham et. al. 1990] examined the relationship between the changes

1 There is nothing new here since [Halstead 1975] was one of the first to apply Miller’s finding that people can only effectively recall 7 plus or minus 2 items from their short-term memory. Likewise the construction of a partitioned model contrasting ‘small’ module effects on faults and ‘large’ module effects on faults was done by Compton and Withrow in 1990 [Compton & Withrow 1990].
experienced by two sub-systems and a number of metrics, including McCabe’s metric. Two
different regression equations resulted (6), (7):

\[C = 0.042 \ MCI - 0.075 \ N + 0.00001 \ HE \]

(6)

\[C = 0.25 \ MCI - 0.53 \ DI + 0.09 \ VG \]

(7)

For the first sub-system changes, \(C \), was found to be reasonably dependent on machine code
instructions, \(MCI \), operator and operand totals, \(N \), and Halstead’s effort metric, \(HE \). For the
other sub-system McCabe’s complexity metric, \(VG \) was found to partially explain \(C \) along
with machine code instructions, \(MCI \) and data items, \(DI \).

All of the metrics discussed so far are defined on code. There are now a large number of
metrics available earlier in the life-cycle, most of which have been claimed by their
proponents to have some predictive powers with respect to residual defect density. For
example, there have been numerous attempts to define metrics which can be extracted from
design documents using counts of ‘between module complexity’ such as call statements and
data flows; the most well known are the metrics in [Henry & Kafura 1984]. [Ohlsson and
Alberg 1996] reported on a study at Ericsson where metrics derived automatically from
design documents were used to predict especially fault-prone modules prior to testing.
Recently, there have been several attempts, such as [Basili et. al. 1996] and [Chidamber &
Kemerer 1992], to define metrics on object-oriented designs.

The advent and widespread use of Albrecht Function Points (FPs) raises the possibility of
defect density predictions based on a metric which can be extracted at the specification stage.
There is widespread belief that FPs are a better (one-dimensional) size metric than LOC; in
theory at least they get round the problems of lack of uniformity and they are also language
independent. We already see defect density defined in terms of defects per FP, and empirical
studies are emerging that seem likely to be the basis for predictive models. For example, in
Table 1, [Jones 1991] reports the following bench-marking study, reportedly based on large
amounts of data from different commercial sources.

<table>
<thead>
<tr>
<th>Defect Origins</th>
<th>Defects per Function Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>1.00</td>
</tr>
<tr>
<td>Design</td>
<td>1.25</td>
</tr>
<tr>
<td>Coding</td>
<td>1.75</td>
</tr>
<tr>
<td>Documentation</td>
<td>0.60</td>
</tr>
<tr>
<td>Bad Fixes</td>
<td>0.40</td>
</tr>
<tr>
<td>Total</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Table 1: Defects per life-cycle phase
3 Prediction using testing metrics

Some of the most promising local models for predicting residual defects involve very careful collection of data about defects discovered during early inspection and testing phases. The idea is very simple: you have \(n \) pre-defined phases at which you collect data \(d_n \) — the defect rate. Suppose phase \(n \) represents the period of the first 6 months of the product in the field, so that \(d_n \) is the rate of defects found within that period. To predict \(d_n \) at phase \(n-1 \) (which might be integration testing) you look at the actual sequence \(d_1, \ldots, d_{n-1} \) and compare this with profiles of similar, previous products, and use statistical extrapolation techniques. With enough data it is possible to get accurate predictions of \(d_n \) based on observed \(d_1, \ldots, d_m \) where \(m \) is less than \(n-1 \). This method is an important feature of the Japanese software factory approach [Cusomano 1991, Koga 1992, Yasuda 1989]. Extremely accurate predictions are claimed (usually within 95% confidence limits) due to stability of the development and testing environment and the extent of data-collection. It appears that the IBM NASA Space shuttle team is achieving similarly accurate predictions based on the same kind of approach [Keller 1992].

In the absence of an extensive local database it may be possible to use published benchmarking data to help with this kind of prediction. [Dyer 1992] and [Humphrey 1989], contain a lot of this kind of data. [Buck & Robbins 1984] report on some remarkably consistent defect density values during different review and testing stages across different types of software projects at IBM. For example, for new code developed the number of defects per KLOC discovered with Fagan inspections settles to a number between 8 and 12. There is no such consistency for old code. Also the number of man-hours spent on the inspection process per major defect is always between 3 and 5. The authors speculate that, despite being unsubstantiated with data, these values form ‘natural numbers of programming’, believing that they are ‘inherent to the programming process itself’. Also useful (providing you are aware of the kind of limitations discussed in [Fenton et. al. 1994]) is the kind of data published by [Grady 1992] in the Table 2:

<table>
<thead>
<tr>
<th>Testing Type</th>
<th>Defects found per hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular use</td>
<td>0.210</td>
</tr>
<tr>
<td>Black-box</td>
<td>0.282</td>
</tr>
<tr>
<td>White-box</td>
<td>0.322</td>
</tr>
<tr>
<td>Reading/Inspections</td>
<td>1.057</td>
</tr>
</tbody>
</table>

Table 2: Defects found per testing approach

One class of testing metrics that appear to be quite promising for predicting defects are the so-called test coverage measures. A structural testing strategy specifies that we have to select enough test cases so that each of a set of "objects" in a program lie on some path (i.e. are ‘covered’) in at least on test case. For example, statement coverage is a structural testing strategy in which the "objects" are the statements. For a given strategy and a given set of test
cases we can ask what proportion of coverage has been achieved. The resulting metric is defined as the Test Effectiveness Ratio (TER) with respect to that strategy. For example TER1 is the TER for statement coverage; TER2 is the TER for branch coverage; and TER3 is the TER for Linear Code Sequence and Jump coverage. Clearly we might expect the number of discovered defects to approach the number of defects actually in the program as the values of these TER metrics increases. [Veevers & Marshall 1994] report on some defect and reliability prediction models using these metrics which give quite promising results. Interestingly [Neil 1992b] reported that the modules with high structural complexity metric values had a significantly lower TER than smaller modules. This supports our intuition that testing larger modules is more difficult and that such modules would appear more likely to contain undetected defects.

Voas and Miller use static analysis of programs to conjecture the presence or absence of defects before testing has taken place [Voas & Miller 1995]. Their method relies on a notion of program testability which seeks to determine how likely a program will fail assuming it contains defects. Some programs will contain defects that may be difficult to discover by testing by virtue of their structure and organisation. Such programs have a low defect revealing potential and may therefore hide defects until they show themselves as failures during operation. Voas and Miller use program mutation analysis to simulate the conditions that would cause a defect to reveal itself as a failure if a defect was indeed present. Essentially if program testability could be estimated before testing takes place the estimates could help predict those programs that would reveal less defects during testing even if they contained defects. [Bertolino & Strigini 1996] provide an alternative exposition of testability measurement and its relation to testing, debugging and reliability assessment.

4 Prediction using process quality data

There are many experts who argue that the ‘quality’ of the development process is the best predictor of product quality (and hence, by default, of residual defect density). This issue, and the problems surrounding it, is discussed extensively in [Fenton et al. 1994]]. There is a dearth of empirical evidence linking process quality to product quality. The simplest metric of process quality is the 5-level ordinal scale SEI Capability Maturity Model (CMM) ranking. Despite its widespread popularity, there was until recently no evidence to show that level\((n+1)\) companies generally deliver products with lower residual defect density than level\(n\) companies. The [Diaz & Sligo 1997] study provides the first promising empirical support for this widely held assumption.

Clearly the strict 1-5 ranking, as prescribed by the SEI-CMM, is too coarse to be used directly for defect prediction since not all of the processes covered by the CMM will relate to software quality. The best available evidence relating particular process methods to defect density concerns the Cleanroom method [Dyer 1992]. There is independent validation that, for relatively small projects (less than 30 KLOC), the use of Cleanroom results in approximately 3 errors per KLOC during statistical testing, compared with traditional development post-delivery defect densities of between 5 to 10 defects per KLOC. Also, Capers Jones hypothesises quality targets expressed in ‘defect potentials’ and ‘delivered defects’ for different CMM levels, as shown in Table 3, [Jones 1996].
There have been many attempts to develop multi-linear regression models based on multiple metrics. If there is a consensus of sorts about such approaches it is that the accuracy of the predictions is never significantly worse when the metrics set is reduced to a handful (say 3-6 rather than 30) [Munson & Khoshgoftaar 1990]. A major reason for this is that many of the metrics are collinear; that is they capture the same underlying attribute — so the reduced set of metrics has the same information content, [Neil 1992a]. Thus, much work has concentrated on how to select those small number of metrics which are somehow the most powerful and/or representative. Principal Component Analysis (see [Manly 1986]) is used in some of the studies to reduce the dimensionality of many related metrics to a smaller set of ‘principal components’, whilst retaining most of the variation observed in the original metrics.

For example, [Neil 1992a] discovered that 38 metrics, collected on around 1000 modules, could be reduced to 6 orthogonal dimensions that account for 90% of the variability. The most important dimensions; size, nesting and prime were then used to develop an equation to discriminate between low and high maintainability modules.

Munson and Khoshgoftaar in various papers, [Khoshgoftaar & Munson 1990, Munson & Khoshgoftaar 1990, 1992], use a similar technique, Factor Analysis, to reduce the dimensionality to a number of “independent” factors. These factors are then labelled so as to represent the ‘true’ underlying dimension being measured, such as control, volume and modularity. In [Khoshgoftaar & Munson 1990] they used factor analytic variables to help fit regression models to a number of error data sets, including Akiyama's [Akiyama 1971]. This helped to get over the inherent regression analysis problems presented by multicollinearity in metrics data.

Munson and Khoshgoftaar have advanced the multivariate approach to calculate a ‘relative complexity metric’. This metric is calculated using the magnitude of variability from each of the factor analysis dimensions as the input weights in a weighted sum. In this way a single metric integrates all of the information contained in a large number of metrics. This is seen to offer many advantages of using a univariate decision criterion such as McCabe's metric [Munson & Khoshgoftaar 1992].
A critique of current approaches to defect prediction

One could be forgiven for inferring from the sheer volume of research and practical work done in software defect prediction that the underlying problem had been largely solved. Unfortunately nothing could be further from the truth. There are some flawed assumptions about how defects are defined, caused and observed and this has led to contradictory conclusions and false claims. Many of the empirical results reported about defects and the factors that shape their introduction and detection are weakened by potentially fatal flaws either in the research methodology and theory used or the data collected.

In order to best suggest improvements to the software engineering community’s research direction we classify the serious problems as follows (dealing with each in turn in subsequent sections)

- the unknown relationship between defects and failures (Section 6.1);
- problems with the ‘multivariate’ statistical approach (Section 6.2);
- problems of using size and complexity metrics as sole ‘predictors’ of defects (Section 6.3);
- problems in statistical methodology and data quality (Section 6.4);
- false claims about software decomposition and the ‘Goldilock’s conjecture’ (Section 6.5).

6.1 The Unknown Relationship between Defects and Failures

There is considerable disagreement about the definitions of defects, errors, faults and failures. In different studies defect counts refer to:

- post-release defects;
- the total of "known" defects;
- the set of defects discovered after some arbitrary fixed point in the software life-cycle (e.g. after unit testing).

The terminology differs widely between studies; defect rate, defect density and failure rate are used almost interchangeably. It can also be difficult to tell whether a model is predicting discovered defects or residual defects. Because of these problems (which are discussed extensively in [Fenton & Pfleeger 1996]) we have to be extremely careful about the way we interpret published predictive models.

Apart from these problems of terminology and definition the most serious weakness of any prediction of residual defects or defect density concerns the weakness of defect count itself
as a measure of software reliability. Even if we knew exactly the number of residual defects in our system we have to be extremely wary about making definitive statements about how the system will operate in practice. The reasons for this appear to be:

- Difficulty of determining in advance the seriousness of a defect; few of the empirical studies attempt to distinguish different classes of defects;

- Great variability in the way systems are used by different users, resulting in wide variations of operational profiles. It is thus difficult to predict which defects are likely to lead to failures (or to commonly occurring failures).

The latter point is particularly serious and has been highlighted dramatically by [Adams 1984]. Adams examined data from nine large software products, each with many thousands of years of logged use world-wide. He charted the relationship between detected defects and their manifestation as failures. For example, 33% of all defects led to failures with a mean time to failure greater than 5000 years. In practical terms, this means that such defects will almost never manifest themselves as failures. Conversely, the proportion of defects which led to a mean time to failure of less than 50 years was very small (around 2%). However, it is these defects which are the important ones to find, since these are the ones which eventually exhibit themselves as failures to a significant number of users. Thus, Adams’ data demonstrates the Pareto principle: a very small proportion of the defects in a system will lead to almost all the observed failures in a given period of time; conversely, most defects in a system are benign in the sense that in the same given period of time they will not lead to failures.

It follows that finding (and removing) large numbers of defects may not necessarily lead to improved reliability. It also follows that a very accurate residual defect density prediction may be a very poor predictor of operational reliability, as has been observed in practice [Fenton & Ohlsson 1997]. This means we should be very wary of attempts to equate fault densities with failure rates, as proposed for example by Capers Jones (Table 4, cited in [Stalhane 1992]). Although highly attractive in principle, such a model does not stand up to empirical validation.

<table>
<thead>
<tr>
<th>F/KLOC</th>
<th>MTTF</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 30</td>
<td>1 minute</td>
</tr>
<tr>
<td>20 -30</td>
<td>4-5 minutes</td>
</tr>
<tr>
<td>5 - 10</td>
<td>1 hour</td>
</tr>
<tr>
<td>2 - 5</td>
<td>several hours</td>
</tr>
</tbody>
</table>

2 Here we use the ‘technical’ concept of reliability, defined as mean time to failure or probability of failure on demand, in contrast to the ‘looser’ concept of reliability with its emphasis on defects.
Defect counts cannot be used to predict reliability because, despite its usefulness from a system developer’s point of view, it does not measure the quality of the system as the user is likely to experience it. The promotion of defect counts as a measure of ‘general quality’ is therefore misleading. Reliability prediction should therefore be viewed as complementary to defect density prediction.

6.2 Problems with the multivariate approach

Applying multivariate techniques, like factor analysis, produces metrics which cannot be easily or directly interpretable in terms of program features. For example, in [Khoshgoftaar & Munson 1990] a factor dimension metric, $control$, was calculated by the weighted sum (8):

$$ control = a_1 HNK + a_2 PRC + a_3 E + a_4 VG + a_5 MMC + a_6 Error + a_7 HNP + a_8 LOC $$ (8)

where the a_i's are derived from factor analysis. HNK was Henry and Kafura's information flow complexity metric, PRC is a count of the number of procedures, E is Halstead's effort metric, VG is McCabe's complexity metric, MMC is Harrison's complexity metric and LOC is lines of code. Although this equation might help to avoid multicollinearity it is hard to see how you might advise a programmer or designer on how to re-design the programs to achieve a "better" $control$ metric value for a given module. Likewise the effects of such a change in module $control$ on defects is less than clear.

These problems are compounded in the search for an ultimate or relative complexity metric [Khoshgoftaar & Munson 1990]. The simplicity of such a single number seems deceptively appealing but the principles of measurement are based on identifying differing well-defined attributes with single standard measures [Fenton & Pfleeger 1996]. Although there is a clear role for data reduction and analysis techniques, such as factor analysis, this should not be confused or used instead of measurement theory. For example, statement count and lines of code are highly correlated because programs with more lines of code typically have a higher number of statements. This does not mean that the true size of programs is some combination of the two metrics. A more suitable explanation would be that both are alternative measures of the same attribute. After all Centigrade and Fahrenheit are highly correlated measures of temperature. Meteorologists have agreed a convention to use one of these as a standard in weather forecasts. In the USA temperature is most often quoted as Fahrenheit whilst in the UK it is quoted as Centigrade. They do not take a weighted sum of both temperature measures. This point lends support to the need to define meaningful and
standard measures for specific attributes rather than searching for a single metric using the multivariate approach.

6.3 Problems in using size and complexity metrics to predict defects

A discussion of the theoretical and empirical problems with many of the individual metrics discussed above may be found in [Fenton & Pfleeger 1996]. There are as many empirical studies (see, for example, [Hamer & Frewin 1982, Shen et al 1983, Shepperd 1988]) refuting the models based on Halstead, and McCabe as there are studies ‘validating’ them. Moreover, some of the latter are seriously flawed. Here we concentrate entirely on their use within models used to predict defects.

The majority of size and complexity models assume a straight-forward relationship with defects — defects are a function of size or defects are caused by program complexity. Despite the reported high correlations between design complexity and defects the relationship is clearly not a straight-forward one. It is clear that it is not entirely causal because if it were we couldn’t explain the presence of defects introduced when the requirements are defined. It is wrong to mistake correlation for causation. An analogy would be the significant positive correlation between IQ and height in children. It would be dangerous to predict IQ from height because height doesn't cause high IQ; the underlying causal factor is physical and mental maturation. There are a number of interesting observations about the way complexity metrics are used to predict defect counts:

- the models ignore the causal effects of programmers and designers. After all it is they who introduce the defects so any attribution for faulty code must finally rest with individual(s);
- overly complex programs are themselves a consequence of poor design ability or problem difficulty. Difficult problems might demand complex solutions and novice programmers might produce ‘spaghetti code’;
- defects may be introduced at the design stage because of the over-complexity of the designs already produced. Clerical errors and mistakes will be committed because the existing design is difficult to comprehend. Defects of this type are ‘inconsistencies’ between design modules and can be thought of as quite distinct from requirements defects.

6.4 Problems in data quality and statistical methodology

The weight given to knowledge obtained by empirical means rests on the quality of the data collected and the degree of rigour employed in analysing this data. Problems in either data quality or analysis may be enough to make the resulting conclusions invalid. Unfortunately some defect prediction studies have suffered from such problems. These problems are caused, in the main, by a lack of attention to the assumptions necessary for successful use of a particular statistical technique. Other serious problems include the lack of distinction made between model fitting and model prediction and the unjustified removal of data points or mis-use of averaged data.
The ability to replicate results is a key component of any empirical discipline. In software development different findings from diverse experiments could be explained by the fact that different, perhaps uncontrolled, processes were used on different projects. Comparability over case studies might be better achieved if the processes used during development were documented, along with estimates of the extent to which they were actually followed.

6.4.1 Multicollinearity

Multicollinearity is the most common methodological problem encountered in the literature. Multi-collinearity is present when a number of predictor variables are highly positively or negatively correlated. Linear regression depends on the assumption of zero correlation between predictor variables, [Manly 1986]. The consequences of multicollinearity are many fold; it causes unstable coefficients, misleading statistical tests and unexpected coefficient signs. For example, one of the equations in [Kitchenham et al. 1990]:

\[c = 0.042 \, MCI - 0.075 \, N + 0.00001 \, HE \]

shows clear signs of multicollinearity. If we examine the equation coefficients we can see that an increase in the operator and operand total, \(N \), should result in an increase in changes, \(c \), all things being equal. This is clearly counter-intuitive. In fact analysis of the data reveals that machine code instructions, \(MCI \), operand and operator count, \(N \), and Halstead's Effort metric, \(HE \), are all highly correlated [Neil 1992a]. This type of problem appears to be common in the software metrics literature and some recent studies appear to have fallen victim to the multicollinearity problem [Compton & Withrow 1990, Zhou et al. 1993].

Collinearity between variables has also been detected in a number of studies that reported a negative correlation between defect density and module size. Rosenberg reports that, since there must be a negative correlation between \(X \), size, and \(1/X \) it follows that the correlation between \(X \) and \(Y/X \) (defects/size) must be negative whenever defects are growing at most linearly with size [Rosenberg 1997]. Studies which have postulated such a linear relationship are more than likely to have detected negative correlation, and therefore concluded that large modules have smaller defect densities, because of this property of arithmetic.

6.4.2 Factor analysis Vs principal components analysis

The use of factor analysis and principal components analysis solves the multicollinearity problem by creating new orthogonal factors or principal component dimensions, [Khoshgoftaar & Munson 1990]. Unfortunately the application of factor analysis assumes the errors are Gaussian, whereas [Kitchenham 1988] notes that most software metrics data is non-Gaussian. Principal components analysis can be used instead of factor analysis because it does not rely on any distributional assumptions, but will on many occasions produce results broadly in agreement with factor analysis. This makes the distinction a minor one, but one that needs to be considered.
6.4.3 Fitting models Vs predicting data

Regression modelling approaches are typically concerned with fitting models to data rather than predicting data. Regression analysis typically finds the least-squares fit to the data and the goodness of this fit demonstrates how well the model explains historical data. However a truly successful model is one which can predict the number of defects discovered in an unknown module. Furthermore this must be a module not used in the derivation of the model. Unfortunately, perhaps because of the shortage of data, some researchers have tended to use their data to fit the model without being able to test the resultant model out on a new data set. See, for example, [Akiyama 1971, Compton & Withrow 1990, Hatton 1993].

6.4.4 Removing data points

In standard statistical practice there should normally be strong theoretical or practical justification for removing data points during analysis. Recording and transcription errors are often an acceptable reason. Unfortunately, it is often difficult to tell from published papers whether any data points have been removed before analysis, and if they have, the reasons why. One notable case is [Compton & Withrow 1990] who reported removing a large number of data points from the analysis because they represented modules that had experienced zero defects. Such action is surprising in view of the conjecture they wished to test; that defects were minimised around an optimum size for Ada. If the majority of smaller modules had zero defects, as it appears, then we cannot accept Compton and Withrow’s conclusions about the ‘Goldilock’s Conjecture’.

6.4.5 Using ‘averaged’ data

We believe that the use of ‘averaged’ data in analysis rather than the original data prejudices many studies. The study in [Hatton 1997] uses graphs, apparently derived from the original NASA-Goddard data, plotting ‘average size in statements’ against ‘number of defects’ or ‘defect density’. Analysis of averages are one step removed from the original data and it raises a number of issues. Using averages reduces the amount of information available to test the conjecture under study and any conclusions will be correspondingly weaker. The classic study in [Basili & Perricone 1984] used average fault density of grouped data in a way that suggested a trend that was not supported by the raw data. The use of averages may be a practical way around the common problem where defect data is collected at a higher level, perhaps at the system or sub-system level, than is ideal; defects recorded against individual modules or procedures. As a consequence data analysis must match defect data on systems against statement counts automatically collected at the module level. There may be some modules within a sub-system that are over penalised when others keep the average high because the other modules in that sub-system have more defects or vice-versa. Thus, we cannot completely trust any defect data collected in this way.

Mis-use of averages has occurred in one other form. In Gaffney’s paper, [Gaffney 1984], the rule for optimal module size was derived on the assumption that to calculate the total number of defects in a system we could use the same model as had been derived using module defect counts. The model derived at the module level is shown by equation (4) and can be extended
to count the total Defects in a system, \(D_r \), based on \(L_r \), (9). The total number of modules in the system is denoted by \(N \).

\[
D_T = \sum_{i=1}^{N} D_i = 4.2N + 0.0015 \sum_{i=1}^{N} (L_i)^{4/3}
\]

(9)

Gaffney assumes that the average module size can be used to calculate the total defect count and also the optimum module size for any system, using equation (10):

\[
D_T = 4.2N + 0.0015N \left[\sum_{i=1}^{N} \frac{L_i}{N} \right]^{4/3}
\]

(10)

However we can see that equations (9) and (10) are not equivalent. The use of equation (10) mistakenly assumes the power of a sum is equal to a sum of powers.

6.5 The ‘Goldilock’s Conjecture’

The results of inaccurate modelling and inference is perhaps most evident in the debate that surrounds the ‘Goldilock’s Conjecture’ discussed in Section 2 — the idea that there is an optimum module size that is “not too big nor too small”. [Hatton 1997] claims that there is “compelling empirical evidence from disparate sources to suggest that in any software system, larger components are proportionally more reliable than smaller components”.

If these results were generally true the implications for software engineering would be very serious indeed. It would mean that program decomposition as a way of solving problems simply did not work. Virtually all of the work done in software engineering extending from fundamental concepts, like modularity and information-hiding, to methods, like object-oriented and structured design would be suspect because all of them rely on some notion of decomposition. If decomposition doesn’t work then there would be no good reason for doing it.

Claims with such serious consequences as these deserve special attention. We must ask whether the data and knowledge exists to support them. These are clear criteria — if the data exist to refute the conjecture that large modules are ‘better’ and if we have a sensible explanation for this result then a claim will stand. Our analysis shows that, using these criteria, these claims cannot currently stand. In the studies that support the conjecture we found the following problems:

- none define ‘module’ in such a way as to make comparison across data sets possible;
• none explicitly compare different approaches to structuring and decomposing designs;
• the data analysis or quality of the data used could not support the results claimed;
• a number of factors exist that could partly explain the results which these studies have neglected to examine.

Additionally, there are other data sets which do not show any clear relationships between module size and defect density.

If we examine the various results we can divide them into three main classes. The first class contains models, exemplified by graph (A) in Figure 1, that shows how defect density falls as module size increases. Models such as these have been produced by Akiyama, Gaffney and Basili and Pericone. The second class of models, exemplified by (B) in Figure 1, differ from the first because they show the Goldilocks principle at work. Here defect density rises as modules get bigger in size. The third class, exemplified by (C) in Figure 1, shows no discernible pattern whatsoever. Here the relationship between defect density and module size appears random — no meaningful curvilinear models could be fitted to the data at all.

Figure 1: Three Classes of Defect Density Results

The third class of results show the typical data pattern from a number of very large industrial systems. One data set was collected at the Tandem Corporation and was reported in, [Cherf 1991]. The Tandem data was subsequently analysed by Neil in 1992, [Neil 1992a], using the principal components technique to produce a 'combined measure' of different size measures, such as decision counts. This principal component statistic was then plotted against the number of changes made to the system modules (these were predominantly changes made to fix defects). This defect data was standardised according to normal statistical practice. A polynomial regression curve was fitted to the data in order to determine whether there was significant non-linear effects of size on defect density. The results were published and are reproduced here in Figure 2.
Despite some parameters of the polynomial curve being statistically significant it is obvious that there is no discernible relationship between defect counts and module size in the Tandem data set. Many small modules experienced no defects at all and the fitted polynomial curve would be useless for prediction. This data clearly refutes the simplistic assumptions typified by class (A) and (B) models — these models couldn’t explain the Tandem data nor accurately predict the defect density values of these Tandem modules. A similar analysis and result is presented in [Fenton & Ohlsson 1997].

We conclude that the relationship between defects and module size is too complex, in general, to admit to straightforward curve fitting models. These results therefore contradict the idea that there is a general law linking defect density and software component size as suggested by the ‘Goldilock’s Conjecture’.

7 Predicting Defects using BBNs

It follows from our analysis in Section 6 that the suggestion that defects can be predicted by complexity or size measures alone presents only a skewed picture. The number of defects discovered is clearly related to the amount of testing performed, as discussed above. A program which has never been tested, or used for that matter, will have a zero defect count, even though its complexity may be very high. Moreover, we can assume the test effectiveness of complex programs is relatively low, [Voas & Miller 1995], and such programs could be expected to exhibit a lower number of defects per line of code during testing because they ‘hide’ defects more effectively. This could explain many of the empirical results that larger modules have lower defect densities. Therefore, from what we know of testability, we could conclude that large modules contained many residual defects, rather than concluding that large modules were more reliable (and by implication that software decomposition is wrong).

Clearly all of the problems described in Section 6 are not going to be solved easily. However, we believe that modelling the complexities of software development using new probabilistic techniques presents a positive way forward. These methods, called Bayesian
Belief Networks (BBNs), allow us to express complex inter-relations within the model at a level of uncertainty commensurate with the problem. In this section we first provide an overview of BBNs (Section 7.1) and describe the motivation for the particular BBN example used in defects prediction (Section 7.2). In Section 7.3 we describe the actual BBN.

7.1 An overview of BBNs

Bayesian Belief Networks (also known as Belief Networks, Causal Probabilistic Networks, Causal Nets, Graphical Probability Networks, Probabilistic Cause-Effect Models, and Probabilistic Influence Diagrams) have attracted much recent attention as a possible solution for the problems of decision support under uncertainty. Although the underlying theory (Bayesian probability) has been around for a long time, the possibility of building and executing realistic models has only been made possible because of recent algorithms and software tools that implement them [Lauritzen & Spiegelhalter 1988]. To date BBNs have proven useful in practical applications such as medical diagnosis and diagnosis of mechanical failures. Their most celebrated recent use has been by Microsoft where BBNs underlie the help wizards in Microsoft Office; also the ‘intelligent’ printer fault diagnostic system which you can run when you log onto Microsoft’s web site is in fact a BBN which, as a result of the problem symptoms you enter, identifies the most likely fault.

A BBN is a graphical network that represents probabilistic relationships among variables. BBNs enable reasoning under uncertainty and combine the advantages of an intuitive visual representation with a sound mathematical basis in Bayesian probability. With BBNs, it is possible to articulate expert beliefs about the dependencies between different variables and to propagate consistently the impact of evidence on the probabilities of uncertain outcomes, such as ‘future system reliability’. BBNs allow an injection of scientific rigour when the probability distributions associated with individual nodes are simply ‘expert opinions’.

A BBN is a special type of diagram (called a graph) together with an associated set of probability tables. The graph is made up of nodes and arcs where the nodes represent uncertain variables and the arcs the causal/relevance relationships between the variables. Figure 3 shows a BBN for an example ‘reliability prediction’ problem. The nodes represent discrete or continuous variables, for example, the node ‘use of IEC 1508’ (the standard) is discrete having two values ‘yes’ and ‘no’, whereas the node ‘reliability’ might be continuous (such as the probability of failure). The arcs represent causal/influential relationships between variables. For example, software reliability is defined by the number of (latent) faults and the operational usage (frequency with which faults may be triggered). Hence we model this relationship by drawing arcs from the nodes ‘number of latent faults’ and ‘operational usage’ to ‘reliability’.
For the node ‘reliability’ the node probability table (NPT) might therefore look like that shown in Table 5 (for ultra-simplicity we have made all nodes discrete so that here reliability takes on just three discrete values low, medium, and high). The NPTs capture the conditional probabilities of a node given the state of its parent nodes. For nodes without parents (such as ‘use of IEC 1508’ in Figure 3) the NPTs are simply the marginal probabilities.

<table>
<thead>
<tr>
<th>operational usage</th>
<th>low</th>
<th>med</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>faults</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low</td>
<td>0.10</td>
<td>0.20</td>
<td>0.33</td>
</tr>
<tr>
<td>reliability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>med</td>
<td>0.20</td>
<td>0.30</td>
<td>0.33</td>
</tr>
<tr>
<td>high</td>
<td>0.70</td>
<td>0.50</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Table 5: Node probability table (NPT) for the node 'Reliability'

There may be several ways of determining the probabilities for the NPTs. One of the benefits of BBNs stems from the fact that we are able to accommodate both subjective probabilities (elicited from domain experts) and probabilities based on objective data.

There are many advantages of using BBNs, the most important being the ability to represent and manipulate complex models that might never be implemented using conventional
methods. Another advantage is that the model can predict events based on partial or uncertain data. Because BBNs have a rigorous, mathematical meaning there are software tools that can interpret them and perform the complex calculations needed in their use [HUGIN 1998].

The benefits of using BBNs include:

- specification of complex relationships using conditional probability statements;
- use of ‘what-if?’ analysis and forecasting of effects of process changes;
- easier understanding of chains of complex and seemingly contradictory reasoning via the graphical format;
- explicit modelling of ‘ignorance’ and uncertainty in estimates;
- use of subjectively or objectively derived probability distributions;
- forecasting with missing data.

7.2 Motivation for BBN approach

Clearly defects are not directly caused by program complexity alone. In reality the propensity to introduce defects will be influenced by many factors unrelated to code or design complexity. There are a number of causal factors at play when we want to explain the presence of defects in a program:

- Difficulty of the problem
- Complexity of designed solution
- Programmer/Analyst skill
- Design methods and procedures used

Eliciting requirements is a notoriously difficult process and is widely recognised as being error prone. Defects introduced at the requirements stage are claimed to be the most expensive to remedy if they are not discovered early enough. Difficulty depends on the individual trying to understand and describe the nature of the problem as well as the problem itself. A ‘sorting’ problem may appear difficult to a novice programmer but not to an expert. It also seems that the difficulty of the problem is partly influenced by the number of failed attempts at solutions there have been and whether a ‘ready made’ solution can be reused. Thus, novel problems have the highest potential to be difficult and ‘known’ problems tend to be simple because known solutions can be identified and reused. Any software development project will have a mix of ‘simple’ and ‘difficult’ problems depending on what intellectual resources are available to tackle them. Good managers know this and attempt to prevent defects by pairing up people and problems; easier problems to novices and difficult problems to experts.

When assessing a defect it is useful to determine when it was introduced. Broadly speaking
there are two types of defect; those that are introduced in the requirements and those introduced during design (including coding/implementation which can be treated as design). Useful defect models need to explain why a module has a high or low defect count if we are to learn from its use, otherwise we could never intervene and improve matters. Models using size and complexity metrics are structurally limited to assuming that defects are solely caused by the internal organisation of the software design. They cannot explain defects introduced because:

- the ‘problem’ is ‘hard’;
- problem descriptions are inconsistent;
- the wrong ‘solution’ is chosen and does not fulfil the requirements.

We have long recognised in software engineering that program quality can be potentially improved through the use of proper project procedures and good design methods. Basic project procedures like configuration management, incident logging, documentation and standards should help reduce the likelihood of defects. Such practices may not help the unique genius you need to work on the really difficult problems but they should raise the standards of the mediocre.

Central to software design method is the notion that problems and designs can be decomposed into meaningful chunks where each can be readily understood alone and finally recomposed to form the final system. Loose coupling between design components is supposed to help ensure that defects are localised and that consistency is maintained. What we have lacked as a community is a theory of program composition and decomposition, instead we have fairly ill-defined ideas on coupling, modularity and cohesiveness. However despite not having such a theory every day experience tells us that these ideas help reduce defects and improve comprehension. It is indeed hard to think of any other scientific or engineering discipline that has not benefited from this approach.

Surprisingly, much of the defect prediction work has been pursued without reference to testing or testability. According to [Voas & Miller 1995, Bertolino & Strigini 1996] the testability of a program will dictate its propensity to reveal failures under test conditions and use. Also, at a superficial level the amount of testing performed will determine how many defects will be discovered, assuming there are defects there to discover. Clearly, if no testing is done then no defects will be found. By extension we might argue that difficult problems, with complex solutions, might be difficult to test and so might demand more test effort. If such testing effort is not forthcoming (as is typical in many commercial projects when deadlines loom) then less defects will be discovered, thus giving an over estimate of the quality achieved and a false sense of security. Thus, any model to predict defects must include testing and testability as crucial factors.

7.3 A prototype BBN

Whilst there is insufficient space here to fully describe the development and execution of a BBN model here we have developed a prototype BBN to show the potential of BBNs and illustrate their useful properties. This prototype does not exhaustively model all of the issues
described in Section 7.2 nor does it solve all of the problems described in Section 6. Rather, it shows the possibility of combining the different software engineering schools of thought on defect prediction into a single model. With this model we should be able to show how predictions might be made and explain historical results more clearly.

The majority of the nodes have the following states: ‘very-high’, ‘high’, ‘medium’, ‘low’, ‘very low’, except for the design size node and defect count nodes which have integer values or ranges and the defect density nodes which have real values. The probabilities attached to each of these states are fictitious but are determined from an analysis of the literature or common-sense assumptions about the direction and strength of relations between variables.

Figure 4: BBN topology for defect prediction

The defect prediction BBN can be explained in two stages. The first stage covers the life-cycle processes of specification, design or coding and the second stage covers testing. In Figure 4 problem complexity represents the degree of complexity inherent in the set of problems to be solved by development. We can think of these problems as being discrete functional requirements in the specification. Solving these problems accrues benefits to the user. Any mis-match between the problem complexity and design effort is likely to cause the introduction of defects, defects introduced, and a greater design size. Hence the arrows
between design effort, problem complexity, introduced defects and design size. The testing stage follows the design stage and in practice the testing effort actually allocated may be much less than that required. The mis-match between testing effort and design size will influence the number of defects detected, which is bounded by the number of defects introduced. The difference between the defects detected and defects introduced is the residual defects count. The defect density at testing is a function of the design size and defects detected (defects/size). Similarly, the residual defect density is residual defects divided by design size.

Figure 5: A demonstration of the ‘Goldilock’s Conjecture’

Figure 5 shows the execution of the defect density BBN model under the ‘Goldilock’s Conjecture’ using the Hugin Explorer tool [HUGIN 1998]. Each of the nodes is shown as a window with a histogram of the predictions made based on the facts entered (facts are represented by histogram bars with 100% probability). The scenario runs as follows. A very complex problem is represented as a fact set at ‘very high’ and a ‘high’ amount of design effort is allocated, rather than ‘very high’ commensurate with the problem complexity. The design size is between 1.0 - 2.0 KLOC. The model then propagates these ‘facts’ and predicts
the introduced defects, detected defects and the defect density statistics. The distribution for defects introduced peaks at two with 33% probability but, because less testing effort was allocated than required, the distribution of defects detected peaks around zero with probability 62%. The distribution for defect density at testing contrasts sharply with the residual defect density distribution in that the defect density at testing appears very favourable. This is of course misleading because the residual defect density distribution shows a much higher probability of higher defect density levels.

From the model we can see a credible explanation for observing large ‘modules’ with lower defect densities. Under-allocation of design effort for complex problems results in more introduced defects and higher design size. Higher design size requires more testing effort, which if unavailable, leads to less defects being discovered than are actually there. Dividing the small detected defect counts with large design size values will result in small defect densities at the testing stage. The model explains the ‘Goldilock’s Conjecture’ without ad-hoc explanation or identification of outliers.

Clearly the ability to use BBNs to predict defects will depend largely on the stability and maturity of the development processes. Organisations that do not collect metrics data, do not follow defined life-cycles or do not perform any forms of systematic testing will never be able to build or apply such models. This does not mean to say that less mature organisations cannot build reliable software, rather it implies that they cannot do so predictably and controllably. Achieving predictability of output, for any process, demands a degree of stability rare in software development organisations. Similarly, replication of experimental results can only be predicated on software processes that are defined and repeatable. This clearly implies some notion of Statistical Process Control (SPC) for software development.

8 Conclusions

Much of the published empirical work in the defect prediction area is well in advance of the unfounded rhetoric sadly typical of much of what passes for software engineering research. However every discipline must learn as much, if not more, from its failures as its successes. In this spirit we have reviewed the literature critically with a view to better understand past failures and outline possible avenues for future success.

Our critical review of state-of-the-art of models for predicting software defects has shown that many methodological and theoretical mistakes have been made. Many past studies have suffered from a variety of flaws ranging from model mis-specification to use of inappropriate data. The issues and problems surrounding the ‘Goldilock’s Conjecture’ illustrate how difficult defect prediction is and how easy it is to commit serious modelling mistakes. Specifically, we conclude that the existing models are incapable of predicting defects accurately using size and complexity metrics alone. Furthermore, these models offer no coherent explanation of how defect introduction and detection variables affect defect counts. Likewise any conclusions that large modules are more reliable and that software decomposition doesn’t work are premature.

Each of the different ‘schools of thought’ have their own view of the prediction problem despite the interactions and subtle overlaps between process and product identified here.
Furthermore each of these views model a part of the problem rather than the whole. Perhaps the most critical issue in any scientific endeavour is agreement on the constituent elements or variables of the problem under study. Models are developed to represent the salient features of the problem in a systemic fashion. This is as much the case in physical sciences as social sciences. Economists could not predict the behaviour of an economy without an integrated, complex, macro-economic model of all of the known, pertinent variables. Excluding key variables such as savings rate or productivity would make the whole exercise invalid. By taking the wider view we can construct a more accurate picture and explain supposedly puzzling and contradictory results. Our analysis of the studies surrounding the ‘Goldilock’s Conjecture’ shows how empirical results about defect density can make sense if we look for alternative explanations.

Collecting data from case studies and subjecting it to isolated analysis is not enough because statistics on its own does not provide scientific explanations. We need compelling and sophisticated theories that have the power to explain the empirical observations. The isolated pursuit of these single issue perspectives on the quality prediction problem are, in the longer-term, fruitless. Part of the solution to many of the difficulties presented above is to develop prediction models that unify the key elements from the diverse software quality prediction models. We need models that predict software quality by taking into account information from the development process, problem complexity, defect detection processes and design complexity. We must understand the cause and effect relations between important variables in order to explain why certain design processes are more successful than others in terms of the products they produce.

It seems that successful engineers already operate in a way that tacitly acknowledges these cause-effect relations. After all if they didn’t how else could they control and deliver quality products? Project managers make decisions about software quality using best guesses; it seems to us that will always be the case and the best that researchers can do is a) recognise this fact and b) improve the ‘guessing’ process. We therefore need to model the subjectivity and uncertainty that is pervasive in software development. Likewise, the challenge for researchers is in transforming this uncertain knowledge, which is already evident in elements of the various quality models already discussed, into a prediction model that other engineers can learn from and apply. We are already working on a number of projects using Bayesian Belief Networks as a method for creating more sophisticated models for prediction, [Neil & Fenton 1996, Neil et. al. 1996], and have described one of the prototype BBNs to outline the approach. Ultimately, this research is aiming to produce a method for the statistical process control (SPC) of software production implied by the SEI’s Capability Maturity Model.

All of the defect prediction models reviewed in this paper operate without the use of any formal theory of program/problem decomposition. The literature is however replete with acknowledgements to cognitive explanations of shortcomings in human information processing. While providing useful explanations of why designers employ decomposition as a design tactic they do not, and perhaps cannot, allow us to determine objectively the optimum level of decomposition within a system (be it a requirements specification or a
program). The literature recognises the two structural aspects of software, ‘within’ component structural complexity and ‘between’ component structural complexity, but we lack the way to crucially integrate these two views in a way that would allow us to say whether one design was more or less structurally complex than another. Such a theory might also allow us to compare different decompositions of the same solution to the same problem requirement, thus explaining why different approaches to problem or design decomposition might have caused a designer to commit more or less defects. As things currently stand without such a theory we cannot compare different decompositions and therefore cannot carry out experiments comparing different decomposition tactics. This leaves a gap in any evolving science of software engineering that cannot be bridged using current case study based approaches, despite their empirical flavour.

Acknowledgements

The work carried out here was partly funded by the ESPRIT projects SERENE and DeVa, the EPSRC project IMPRESS and the DISPO project funded by Scottish Nuclear. The authors are indebted to Niclas Ohlsson and Peter Popov for comments that have influenced this work and the anonymous reviewers for their helpful and incisive contributions.

References

3 We are careful here to use the term structural complexity when discussing attributes of design artefacts and cognitive complexity when referring to an individual's understanding of such an artefact. Suffice it to say that structural complexity would influence cognitive complexity.

